Bazaar Agent Architecture Overview

Bazaar!

g &=

, e

L

T

an architecture for conversational agents

David Adamson, Language Technologies Institute
dadamson@cs.cmu.edu

#3 Pame--8g
Parents ? Bl ionmons

SO0 RIS MMEDT )
thrk there 1 goang 10 B
orange AA and whine 22
pasents with 3 ¢hidren Aa
Orange beca use R s

Sage (Tuten) 4271221021 M
? 7 Let me make sure |
usderstand you « are yo
saying ¥ some of e chidren

3
e winte, one Of The parems

C
EDTR 4212 21100 m o
maybe ¥ they have B )
Children S0 402712 21108 pm o0
ax

[
Sage (Tutend 4271221115
T % [.“I,no you telbng
Us T redessive genes arent
AWy expressec’

Tl 42212 21158 rw L0 yes
EdRvaimznampn
Think

@& EI

G E
@€ EI

G &



mailto:dadamson@cs.cmu.edu
mailto:dadamson@cs.cmu.edu

Bazaar Agent Architecture Overview

Getting Started

0. The Bazaar Distribution

Download Bazaar from http://cs.cmu.edu/~dadamson/bazaar/Bazaar.zip and extract the folder
somewhere appropriate.

This contains the core Bazaar libraries and an example agent, plus this document.
1. External Dependencies

Eclipse will be our development environment. http://www.eclipse.org/downloads

ConcertChat is a collaborative chat and whiteboard environment that we’ll use to interact with
our agents. Other user-facing ends can be used, with appropriate adapter classes.
http://cs.cmu.edu/~dadamson/bazaar/ConcertChatServer.zip

MySQL — only required if you’re running your own ConcertChatServer (step 3)
Download MySQL from http://dev.mysal.com/downloads/mysal/5.0.html| Use the appropriate
version for your platform, and follow the standard installation instructions.

2. Open the Projects
Import the three projects (BasilicaCore, BaseAgent, and RepeatExampleAgent) into Eclipse.

3. Set up a chat environment
If you’re using an existing ConcertChat server or another chat environment, ignore this step.

Make sure MySQL is running, then launch the ConcertChat server:

cd ConcertChatServer/bin; ./start.sh (Mac OS X and Linux)

(see additional setup instructions in ConcertChatServer/README.txt)

Also create a chat room instance from the ConcertChat administration webpage:
http://localhost:9000/concertChat/admin

4. Launch your agent

Run RepeatAgentOperation.launch from the RepeatExampleAgent project in Eclipse and verify
that you can join a chatroom interact with the example agent, using the room you created in

Step 3 (or in an existing room on whatever chat server you’re using)
(this just runs myagent.operation.RepeatAgentOperation, specifying the “runtime” folder as the working directory)

Also launch a chat room client from the ConcertChat administration webpage.


http://cs.cmu.edu/~dadamson/bazaar/Bazaar.zip
http://cs.cmu.edu/~dadamson/bazaar/Bazaar.zip
http://www.eclipse.org/downloads
http://www.eclipse.org/downloads
http://cs.cmu.edu/~dadamson/ConcertChatServer.zip
http://cs.cmu.edu/~dadamson/ConcertChatServer.zip
http://dev.mysql.com/downloads/mysql/5.0.html
http://dev.mysql.com/downloads/mysql/5.0.html
http://localhost:9000/concertChat/admin
http://localhost:9000/concertChat/admin

Bazaar Agent Architecture Overview

About Your Agent

Configuration and Runtime Directory

For a cleaner root directory, runtime is specified as the working directory for each agent
project. This can be set in Eclipse->Run->Run Configurations->Arguments->Working Directory.
For the provided agent, this has already been set in the given .launch file.

The runtime/properties folder contains Java properties files for individual agent components.
Most of them follow the naming convention "ClassName.properties"

system.properties includes configuration information for the chat environment.

If you host the ConcertChat server somewhere besides localhost, change the properties
agilo.client.properties, agilo.logging.log4jConfig, agilo.server.name, agilo.webserver.name, and
ipsi.concertchat.menuconf to reflect this.

operation.properties specifies which components are in use for this agent.
Preprocessors handle events sequentially, in the order you list them in.

agent.xml is where the agent’s name is set, and where you’d hook in another environment
besides ConcertChat.

Other folders are referred to by various components (for example, the MessageAnnotator uses
the files in the dictionaries folder, and the PlanExecutor refers to the plans folder.) - most of
these locations are configurable from the component's properties files.

Defining And Responding To Events

An Event is a simple object representing something interesting that’s happened in the chat
room, and contain the necessary information for a receiving module to respond to them. There
are raw Events like MessageEvent and PresenceEvent, representing the actions of chat---room
participants, and Events that result from analysis of raw events or that represent system state,
like DormantStudentEvent or LaunchEvent.

A Basilicalistener or BasilicaPreProcessor registers itself to respond to the classes of Events
returned by its getListenerEventClasses() or getPreProcessorEventClasses() methods. Only
events of these classes will be passed to the component.

Your components can create and listen for existing classes of Events, or you can define new
subclasses that are particular to what’s “interesting” to your agent. In either case, keep in mind
that other components may respond to or create the same events that yours do — design your

components and your events accordingly.



Bazaar Agent Architecture Overview

Defining Listener and Preprocessor Components

In operation.properties, specify which PreProcessor and Listener components should be
loaded for the agent, by their full classnames. These handle analysis of and response to events,
respectively, and implement the interfaces described below.

BasilicaPreProcessor: preprocessEvent(InputCoordinator source, Event e)
The "first wave" of analysis and event generation. Things you can do in response to an event:

Modify the given Event (add annotations, etc).
It will be passed forward to the second-stage listeners.

source.addPreprocessedEvent(e) add a new event to the second-stage "reaction" queue.

source.queueNewEvent(e) Queue a brand new event to pass both waves of processing.

BasilicaListener: processEvent(InputCoordinator source, Event e)
The "second wave" of event responders. Things you can do in response to an event:

source.addEventProposal(Event) Propose an agent action in response to this event

source.addProposal(PriorityEvent) Propose an agent action in response to this event, with a
specific proposal behavior (block other events, callback on accept, etc).

source.pushProposal(PriorityEvent) Push a proposal directly onto the output queue - this is
preferred when behaving asynchronously (in response to a timer, etc)

BasilicaAdapter implements both of these interfaces and provides other conveniences, for example
loading .properties files into a local dictionary.

Proposing Actions

A Basilicalistener can propose new actions to be taken in the chat environment by passing
them to the output queue (by way of the InputCoordinator’s add/push Proposal methods).
Note that the default OutputCoordinator only knows how to enact MessageEvents and
WhiteboardEvents.

Proposals (called PriorityEvents) are constructed with a priority value and a timeout in seconds
— other events in the output queue will be considered (and eventually accepted or rejected)
based on these values.

Each PriorityEvent is also associated with a PrioritySource —once a proposal has been accepted,
its source will have influence on which subsequent proposals can be accepted.

Convenience methods for creating proposals with certain kinds of priority sources are offered
by the InputCoordinator and PriorityEvent classes - see the usages in RepeatExampleAgent,
and the comments in those classes.



Bazaar Agent Architecture Overview

A Bazaar Glossary:
Bazaar is evolving, and several components of the codebase have old names that are no longer fully
descriptive of their function. To aid in your translation of theory to implementation:

Event == Event / Action / Trigger
everything passed from one component to another
including input events from the environment, events created by preprocessors,
and PriorityEvents (which wrap regular MessageEvents/WhiteboardEvents)

PriorityEvent == Proposal / Action / Output Event
includes static factory methods to create special kinds of proposals
defines callbacks to notify components of proposal acceptance / rejection

PrioritySource == Proposal Source / Lingering Advisor
defines proposal priority logic & blocking-advisor functionality.
subclasses implement common cases (used by PriorityEvent factory methods)

BasilicaPreProcessor == Watcher / Listener / Detector / Analyzer / Component
first set of components to process/analyze incoming events.
specified in operation.properties
PreProcessors are run sequentially in listed order.

BasilicaListener == Reactor / Actor / Component
second set of components to process/respond to pre-processed events.
specified in operation.properties
Reactors are run sequentially in listed order.

BasilicaAdapter == BasilicaPreProcessor+ BasilicalListener
implements common+convenience methods for both component interfaces
recommended superclass for most Bazaar components

InputCoordinator == Event Source / Pipeline / Event Coordinator
Receives & relays events to each stage of the Bazaar pipeline
InputCoordinator also manages access to the OutputCoordinator queue.
When adding proposals, use addProposal methods if reacting to a “fresh” event.
use pushProposal methods otherwise (i.e., in response to a timer).

OutputCoordinator == Proposal Queue
Manages action proposals as relayed by the InputCoordinator
Updates proposal priority with advice from recent actions’ PrioritySources
Agent authors should not need to interact directly with the OutputCoordinator.
Accepts and rejects events based on priority/timeouts
(and invokes accept/reject callbacks)
installs and manages PrioritySource advisors.



Bazaar Agent Architecture Overview
Timers, Plans, and Other Advanced Topics

Many components implement the TimeoutReceiver interface (or create an anonymous inner
class of one), allowing behaviors to be triggered by a Timer’s timedOut method.
Use source.pushProposal to queue action proposals in response to a timeout.

Scripts using the PlanExecutor component deserves its own tutorial. However, the
documentation in basilica2.agents.listeners.plan should be sufficient, if spread out.
The RepeatExampleAgent also executes a simple timed plan.

TuTalk http://www.pitt.edu/~tutalk/ may be used within Bazaar to power hierarchical dialogues
— see the TutorAgent example at http://cs.cmu.edu/~dadamson/bazaar/TutorAgent.zip

Models trained in LightSIDE http://cs.cmu.edu/~emayfiel/side.html| may be used by Bazaar to
classify text — see the AnnotatorExampleAgent example at
http://cs.cmu.edu/~dadamson/bazaar/AnnotatorExampleAgent.zip

You'’ll have to import LightSIDE as an Eclipse project as well.

Recorded chatroom transcripts can be played back with the ChatterBox agent at
http://cs.cmu.edu/~dadamson/ChatterBox.zip

Questions? Contact dadamson@cs.cmu.edu


http://www.pitt.edu/~tutalk/
http://www.pitt.edu/~tutalk/
http://cs.cmu.edu/~dadamson/bazaar/TutorAgent.zip
http://cs.cmu.edu/~dadamson/bazaar/TutorAgent.zip
http://cs.cmu.edu/~emayfiel/side.html
http://cs.cmu.edu/~emayfiel/side.html
http://cs.cmu.edu/~dadamson/bazaar/AnnotatorExampleAgent.zip
http://cs.cmu.edu/~dadamson/bazaar/AnnotatorExampleAgent.zip
http://cs.cmu.edu/~dadamson/ChatterBox.zip
http://cs.cmu.edu/~dadamson/ChatterBox.zip
mailto:dadamson@cs.cmu.edu
mailto:dadamson@cs.cmu.edu

